ELYSIUM

SPARK BOTES =

c++
PROGRANMING

Elysium Academy Spark Notes

VERSION 2.4

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/

ELYSIUM

SPARK POTES —{ | | F

e, Mt 0 Corazance

01. G-+ Basics

C++ is a compiled language, meaning you write source code,
compile it to machine code using a compiler (like GCC or Clang),
and then execute the compiled program.

Basic G-+ Program

#1include // Include input/output Library

int main() {

std::cout << << std::endl; // Print message to console

return 0; // Return 0, indicating successful program termination

e Key Points:

* #include <iostream>: This includes the Input/Output stream library,
which allows us to use std::cout and std::cin.

e main() Function: The entry point for any C++ program. The int re-
turn type signifies the exit status of the program.

e std::cout: Standard output stream, used for printing to the console.
* std::endl: Ends the current line and flushes the output buffer

02. Data Types

C++ provides a wide variety of data types for different purposes,
including primitive and user-defined data types.

* Primitive Data Types

Type Description Example

int Integer numbers int age = 25;

float Floating-point num- float weight = 60.5;
bers

dou- |Double-precision double pi = 3.14159:

ble float

char [Single character char grade = ‘A’;
Boolean (True/ .

bool bool isHa = true;
False) PPy

void Represents no type Used in functions with no
or void return value

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/

SPARK DOTES — []ESIum

 Modifiers for Data Types:

» Signed/Unsigned: Modifies integer types to include negative num-

bers or only positive numbers.
* Short/Long: Modifies integer types to reduce or extend their stor-

age capacity.

short int shortNumber = R // Uses Lless memory

unsigned int positiveNumber = 42; // Only stores positive values

long long int largeNumber = 5

e User-Defined Data Types:

e struct: Used to group different data types together.
e enum: Used to define an enumeration (a set of named integral con-

03. Variables and Constants

e Variable Declaration:

Variables in C++ must be declared before they are used, specifying
their type.

struct Person

int age;

char gender;

e Constants:

Constants in C++ are immutable and can be defined using the const
keyword.

int age = 5 // Integer variable

Alternatively, constants can also be defined using #define

#define MAX SIZE

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/

ELYSIUM

SPARK BOTES =00 E

04. Operators in G-+

C++ supports a wide variety of operators for performing operations
on variables.

e Arithmetic Operators:

Opera-| pescription | EXam-
tor ple

+ Addition a+b

- Subtraction a-b

* Multiplication a*b

/ Division a/b

o Moglulus (Re- a%b

mainder)

* Relational Operators:

oG Description 2k
tor ple

== Equal to a==b

. Not equal .
to
Greater

> >b
than @

< Less than a<b

o= Greater or a>=b
equal

<= Less or a<=b
equal

* Logical Operators:

Opera-| Descrip- | Exam-
tor tion ple
Logical
&& AND a&&b
! Logical i3
NOT

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/

ELYSIUM

SPARK BOTES —{ [] ELRIM

e Assignment Operators:

Opera- Description 2. Clu
tor ple
= Assign value a=b
_ Add and as- _
+= . a+=b
sign
- Subtractand | _
assign
e Mul_tiply and a*zb
assign
/= Dlv_lde and a/=b
assign

* Increment/Decrement Operators:

R Description 2l
tor ple

Pre-increment (be-

++3a ++3
fore use)
Post-increment (af-

a++ a++
ter use)
Pre-decrement (be-

--a --a
fore use)
Post-decrement (af-

a-- a--
ter use)

05. Gontrol Structures

C++ provides control structures like conditional statements and
loops to control the flow of execution in programs.

e |f-Else Statement:

if (age >= 18) {

std::cout <<

} else {

std: :cout <«

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/

ELYSIUM

SPARK BOTES —{ | | F

Miesions of Cogrezance

e Switch Case:

switch (day

case 1: std::cout << “Monday”; break;
case 2: std::cout << “Tuesday”; break;
case 3: std::cout << “Wednesday”; break;

default: std::cout << “Another day”;

e Ternary Operator:

std::string result

06. Loops

Loops allow repetitive execution of a block of code.

* For Loop:

int 1 = 9; ; 1++

std::cout << i << std::endl;

* While Loop:
int 1 = 9;
while (i < 5) {

std::cout << i << std::endl;

e Do-While Loop:

std::cout << i << std::endl;

i++;

} while (i < 5);

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/

ELYSIUM

SPARK BOTES —{ | |t

Missions of Cogrezance

e Break and Continue:

e break: Exits a loop immediately.
e continue: Skips the current iteration and moves to the next one.

; 1< 5 1++

if (i == 5) break;

if (1%) continue;

std::cout << i << std::endl;

Functions allow code to be modular, reusable, and easier to
understand.
 Defining and Calling Functions:

int add(int a, int b
return a + b;
}
int main() {
int sum = add(5, 3); // Function call

std::cout << sum; // Outputs 8

e Default Parameters:
add(int a, int b =

return a + b;

main() {

std::cout << add(5); // Outputs 15

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/

ELYSIUM

SPARK ZOTES —{ [] ERReN

 Pass by Value and Reference:

e Pass by Value: The actual value is passed, changes to the parame-
ter inside the function have no effect on the actual argument.
 Pass by Reference: The reference of the variable is passed, chang-
es to the parameter affect the actual argument

void changeValue(int& x // Pass by reference

int main() {
int a = 5;
changevalue(a);

std::cout << a; // Outputs 100

08. Arrays

Arrays in C++ are used to store multiple values of the same data
type.
e Declaring Arrays:

int numbers ; // Array with 5 integers

e Accessing Array Elements:

int first = numbers ; // Access first element

numbers[2] = ; // Modify the third element

e Multidimensional Arrays:

// 2x3 matrix

std::cout << numbers[i] << std::endl;

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/

ELYSIUM

SPARK BOTES

='. ELYSIUM

ACADEMY

Missions of Cogrezance

09. Pointers and References

C++ provides powerful memory manipulation features through
pointers and references.

e Pointers:
* A pointer is a variable that stores the memory address of another
variable

.int a = 5;
.int* p = &a; // Pointer to integer ‘a’

. std::cout << *p; // Dereferencing, outputs 5

* & Operator: Gets the address of a variable.
 * Operator: Dereferences the pointer, accessing the value at the

e Pointer Arithmetic:

* You can perform arithmetic operations on pointers, such as incre-
menting them to access the next memory location.

.int* ptr = arr;

. std::cout << *(ptr + 1); // Outputs 20

 Null Pointers:
A null pointer is a pointer that doesn’t point to any valid address.

 References:
 References provide an alternative name for a variable. Unlike
pointers, they cannot be null or reassigned after initialization.

.int a = 10;

.int&ref = a; // Reference to variable ‘a’

.ref = 20; // Changes the value of ‘a’

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/

ELYSIUM

SPARK BOTES ACADEMY.

ELYSIUM

C++ supports strings through both the C-style character array
(char[]) and the std::string class.
e C-Style Strings:

* std::string Class:

e Common String Operations:

* Length:

e Substring:

11. Obiect-Oriented Programming (O0OP)

C++ supports the principles of OOP, such as encapsulation,
inheritance, and

e Classes and Objects:]]
A class is a blueprint for creating objects.

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/

ELYSIUM

SPARK ZOTES =BT

.void bark() {
std::cout <<”Woof!”<< std::endl;

5
6
7.
8. };

9.int main() {

10.Dog myDog;

11. myDog.name = “Buddy”;

12. myDog.age = 3;

13. myDog.bark(); // Outputs: Woof!
14.

e Encapsulation:

e Data and functions that manipulate that data are encapsulated
within a class.

.classPerson {
.private:

.int age;

.public:

.void setAge(int a) {

age = a;
}

.int getAge() {
.return age;

9. }
11. };

* Inheritance:

* Inheritance allows one class to inherit properties and methods
from another class.

.classAnimal {
.public:
.void eat() {

std::cout <<”This animal is eating.”<< std::endl;
. }
-}
.classDog : publicAnimal {
.public:
.void bark() {

std::cout <<”Woof!”<< std::endl;

12. };
13.int main() {

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/

ELYSIUM

SPARK ZOTES =n BT

e Polymorphism:
 Polymorphism allows one interface to be used for a general class

of actions, typically achieved through function overloading and over-

1. class Animal {
. public:
void eat() {

std::cout << “This animal is eating.” << std::endl;

¥
. class Dog : public Animal {
. public:

void bark() {

std::cout << “Woof!” << std::endl;

-}
. int main() {
Dog myDog;
myDog.eat(); // Inherited from Animal

myDog.bark(); // Defined in Dog

e Constructors and Destructors:
e Constructor: A special function that initializes an object when it’s

created.
e Destructor: A special function that cleans up an object when it’s
destroyed

. class Car {
. public:
Car() {
std::cout << “Car created” << std::endl;
}
~Car() {

std::cout << “Car destroyed” << std::endl;

https://elysiumacademy.org/

ELYSIUM

SPARK BOTES =nEsH

Missions of Cogrezance

12. Dynamic Memory Management

C++ allows you to manually manage memory allocation and
deallocation using new and delete.

e Dynamic Allocation:

int* p = new int(19); // Allocates memory for an integer

delete p; // Deallocates memory
« new[] and delete[]: Used to allocate and deallocate arrays.

int* arr = new int[10];

delete[] arr;

13. Templates

Templates enable generic programming by allowing you to write
functions and classes that work with any data type.

* Function Template:

template <typename T>
T add(T a, T b) {
return a + b;
}
int main() {
std::cout << add<int>(5, 3); // Outputs 8

std::cout << add<double>(s); // Outputs 7.8

o Class Template:

template <typename T>
class Box {
public:
T value;
Box(T v) : value(v) {}
T getValue() { return value; }
¥

int main() {

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/

ELYSIUM

SPARK ZOTES —{ [] ERReN

Box<int> intBox();

std::cout << intBox.getValue(); // Outputs 123

14. Standard Template Library (STL)

The STL provides a collection of useful data structures and
algorithms.
e Common Containers:

e Vector: Dynamic array.

#include <vector>

std: :vector<int> nums =

e Map: Key-value pairs.

#include <map>

std::map<std::string, int> ages;

ages[“John”] = ;
e Set: Unique collection of elements

#include <set>

std::set<int> uniqueNums

e Stack: LIFO (Last In, First Out).

#include <stack>

std::stack<int> s;

s.push(10);

s.push(20);
e Common Algorithms:

e STL provides algorithms like sort(), find(), reverse(), etc.

#include <algorithm>
#include <vector>

std::vector<int> nums = {4, 1, 3, 5, 2};

std: :sort(nums.begin(), nums.end()); // Sorts in ascending order

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/

ELYSIUM

SPARK BOTES

='. ELYSIUM

ACADEMY

Missions of Cogrezance

15. Exception Handling

C++ provides support for exception handling using try, catch, and
throw blocks.

 Try-Catch Block:

int result = / 0; // Division by zero
} catch (const std::exception& e) {

std::cout << “Error: “ << e.what() << std::endl;

e Throwing Exceptions:

throw std::invalid argument(“Invalid argument passed!”);

16. Namespaces

Namespaces are used to organize code and avoid name collisions.

namespace Math
int add(int a, int b) {

return a + b;

}

int main() {

std::cout << Math::add(5, 3); // Outputs 8

e Using using Keyword:

using namespace Math;

std::cout << add(5, 3); // No need for Math:: prefix

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/

ELYSIUM

SPARK BOTES

C++ provides several preprocessor directives for code
management.

e #include: Includes the contents of a file.

e #define: Defines constants or macros.

* #ifdef / #ifndef: Conditional compilation

18. G-+ Best Practices

e Follow Naming Conventions:

e Use camelCase for variables and functions.
e Use PascalCase for class names.

Use RAIlI for Memory Management:

 Resource Acquisition Is Initialization (RAII) ensures that resources
are properly released.

Prefer std::string Over C-Style Strings:
* std::string handles memory automatically and is easier to use.

Use Smart Pointers:

e Use std::shared_ptr and std::unique_ptr for automatic memory
management and to avoid memory leaks.

Avoid Magic Numbers:
 Define meaningful constants instead of using raw numbers in your
code.

Always Check for Pointer Validity:
 Ensure pointers are valid before dereferencing them.

e Write Modular and Reusable Code:
* Break large functions into smaller, reusable ones for readability
and maintainability.

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/

ELYSIUM

SPARK BOTES — [| RSN

19. Conclusion

C++ is a robust and versatile language that provides excellent
control over system resources, making it ideal for developing
high-performance applications. This comprehensive covered
fundamental and advanced concepts, from basic syntax and data
types to object-oriented programming, memory management,
templates, and the Standard Template Library (STL).

As you continue developing in C++, adhering to best practices such
as effective memory management, code modularity, and leveraging
STL and RAIIl principles will ensure your C++ programs are efficient,
maintainable, and scalable. Happy coding!

Click Here To Find Out More

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/
https://elysiumacademy.org/elysium_spark_notes/java-programming-elysium-spark-note-2/https://elysiumacademy.org/elysium_spark_notes/java-programming-elysium-spark-note-2/

ELYSIUM

ELYSIUM
SPARK BOTES ~ acanemy

For Your Cearning Today

® elysiumacademy.org | & info@elysiumacademy.org

Scan Here for More
Spark Notes

© Copyrights by Elysium Academy Private Limited

https://elysiumacademy.org/
https://elysiumacademy.org/

