
Copyrights by Elysium Academy Private Limited©

MANUAL TESTER
ISTQB

Elysium Academy Spark Notes

VERSION 2.7

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

01. Introduction to Software Testing
What is Software Testing?

•	 Validation: Are we building the right product?

•	 Verification: Are we building the product right?

•	 Detect defects in the software.

•	 Prevent defects from entering the system by early identification.

•	 Ensure the product meets its requirements.

•	 Increase confidence that the product works as expected.

•	 Reduce the risk of failures after the product is released.

•	 Quality Assurance: Testing ensures that a product is of high

quality.

•	 Cost Saving: Finding and fixing defects earlier in the lifecycle is

cheaper than later stages.

•	 User Satisfaction: Testing ensures that the product meets the

needs of its users.

•	 Testing shows the presence of defects: Testing can reveal defects,

but cannot prove the absence of them.

•	 Exhaustive testing is impossible: Testing all possible inputs and

scenarios is not feasible; therefore, risk-based testing is employed.

•	 Early testing: The earlier a defect is detected, the cheaper it is to

fix.

•	 Defect clustering: A small number of modules usually contains

most defects.

•	 Pesticide paradox: Re-running the same test cases repeatedly will

stop finding new defects.

•	 Testing is context dependent: Testing strategies and approaches

vary based on the application.

•	 Absence of errors fallacy: A defect-free system may still fail to

meet user expectations.

•	 Objectives of Software Testing:

•	 Importance of Testing:

•	 Principles of Testing:

Software testing is the process of evaluating and verifying that a
software product or application does what it is supposed to do.
The main aim of testing is to ensure that the software meets user
requirements and is free of defects.

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

•	 Test Planning: Defining the objectives, strategy, scope, and

resources for testing.

•	 Test Design: Identifying test conditions and creating test cases.

•	 Test Execution: Running test cases, comparing actual results with

expected outcomes.

•	 Defect Reporting: Logging defects found during testing.

•	 Test Closure: Evaluating the test cycle, reporting test metrics, and

archiving test cases.

The software testing process typically involves the following phases:
•	 The Testing Process and Life Cycle:

•	 Verification vs Validation:

•	 Testing Terminology:

•	 Debugging vs Testing:

•	 Static vs Dynamic Testing:

02. Fundamentals of Testing

•	 Verification: Ensures that the product is built according to the

specifications and requirements (are we building it right?).

•	 Validation: Ensures the product fulfills its intended use when de-

ployed in its environment (are we building the right thing?).

•	 Defect/Bug: A flaw in a software product that causes it to behave

incorrectly.

•	 Test Case: A set of conditions and variables to determine whether

a system meets its requirements.

•	 Test Suite: A collection of test cases.

•	 Test Data: Input given to the software during testing to ensure it

behaves as expected.

•	 Testing: Identifying defects.

•	 Debugging: Fixing the identified defects.

•	 Static Testing: Examining the code and documentation without

executing the program (e.g., reviews, walkthroughs).

•	 Dynamic Testing: Involves executing the code and checking the

output against expected results.

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

•	 STLC (Software Testing Life Cycle):

•	 Waterfall Model:

•	 V-Model (Verification and Validation):

•	 Agile Model:

•	 Testing in DevOps:

A sequential development model where each phase (requirements,
design, implementation, testing, deployment) must be completed before
the next one begins. Testing is done afte r development is complete.

An extension of the Waterfall model where testing activities are planned
in parallel with corresponding development stages. Each phase has its
validation activity (e.g., design has test design, coding has unit testing).

Agile emphasizes collaboration, flexibility, and incremental development.
Testing is continuous and performed throughout development. Agile
uses iterative cycles called sprints, where testing is integrated with
development.

In DevOps, testing is integrated into continuous integration/continuous
deployment (CI/CD) pipelines. Testing becomes automated and part of
the ongoing development process, allowing for frequent releases with
minimal risk.

The Software Testing Life Cycle consists of several phases that ensure
systematic testing:

03. The Software Development Life Cycle (SDLC) and Testing
 Models

•	 Requirement Analysis: Understand what is being tested.

•	 Test Planning: Determine testing scope, strategy, and resources.

•	 Test Case Development: Create detailed test cases based on

requirements.

•	 Test Environment Setup: Prepare the testing environment.

•	 Test Execution: Run test cases and log defects.

•	 Test Cycle Closure: Evaluate testing success and wrap up the

cycle

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

•	 Unit Testing:

•	 Functional Testing:

•	 Integration Testing:

•	 System Testing:

•	 Acceptance Testing:

04. Test Levels

05. Test Types

•	 Tests individual units or components of the software.

•	 Usually performed by developers.

•	 Helps ensure that individual functions or modules work correctly

in isolation.

•	 Verifies that the software functions according to requirements.
•	 Includes:

1.	 Smoke Testing: Preliminary testing to check if the basic

functionality works.

2.	Sanity Testing: Focused testing on specific functionalities

after a change.

3.	Regression Testing: Ensures that new changes do not

introduce new defects.

•	 Verifies the interactions between integrated units or components.

•	 Can be done using different strategies, such as Big Bang or

Incremental (Top-Down or Bottom-Up).

•	 Tests the entire integrated system to validate that it meets

specified requirements.

•	 Ensures that the system works end-to-end as a whole.

•	 Performed by the end users to determine if the system meets

business needs.

•	 User Acceptance Testing (UAT) and Operational Acceptance

Testing (OAT) are common types.

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

•	 Non-Functional Testing:

•	 Regression Testing:

•	 Maintenance Testing:

•	 Black Box Techniques:

•	 White Box Techniques:

06. Test Design Techniques

•	 Tests aspects of the software not related to specific behaviors,

such as:

•	 Ensures that changes to the code do not introduce new defects in

previously working functionality.

•	 Usually performed after bug fixes, updates, or code modifications.

•	 Focuses on testing the system’s external behavior without

knowledge of the internal code structure.

•	 Testing based on the internal structure and logic of the system.

•	 Performed to ensure that updates, upgrades, or fixes to the

system do not negatively impact the overall functionality.

1.	 Performance Testing: Checks the system’s performance

under various conditions.

2.	Usability Testing: Ensures the system is easy to use.

3.	Security Testing: Ensures the system is protected against

unauthorized access and attacks.

1.	 Equivalence Partitioning: Dividing input data into valid and

invalid partitions.

2.	Boundary Value Analysis (BVA): Testing at the boundaries

between partitions.

3.	Decision Table Testing: Used when the system’s output

depends on different combinations of inputs.

1.	 Statement Coverage: Ensures every statement in the code is

executed at least once.

2.	Branch Coverage: Ensures every decision branch (true/

false) is tested.

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

•	 Experience-Based Techniques:

•	 Test Planning:

•	 Test Control:

•	 Test Estimation:

•	 Test Reporting and Metrics:

•	 Entry and Exit Criteria:

07. Test Management

•	 Relies on the tester’s experience, intuition, and knowledge of past

bugs.

•	 Defining the test strategy, objectives, resources, schedule, and

deliverables.

•	 The test plan document outlines the scope, approach, resources,

and schedule of testing activities.

•	 Ongoing activities to track the test progress and adjust the plan if

necessary.

•	 Estimating the time and effort required to perform the testing

activities. Common techniques include:

•	 Reporting test results, defects, and overall product quality.

•	 Test Metrics: Quantitative data, such as test coverage, defect

density, test execution rate.

•	 Entry Criteria: Defines the conditions that must be met before

testing can begin.

•	 Exit Criteria: Defines when testing can be concluded, such as after

a certain percentage of test cases are executed and passed.

1.	 Exploratory Testing: Involves simultaneous learning, test

design, and test execution.

2.	Error Guessing: The tester guesses where defects may be

based on experience.

1.	 Work Breakdown Structure (WBS)

2.	Expert-based Estimation

3.	Historical Data-based Estimation

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

•	 Defect Lifecycle:

•	 Severity vs Priority:

•	 Defect Reporting:

•	 Test Management Tools:

•	 Defect Tracking Tools:

•	 Automation Tools:

08. Defect Management

09. Testing Tools

•	 New: A defect is identified and reported.

•	 Assigned: The defect is assigned to a developer to fix.

•	 Open: The developer starts working on the defect.

•	 Fixed: The defect is fixed and ready for retesting.

•	 Closed: The defect is verified as fixed by the tester.

•	 Reopened: If the defect reoccurs, it is reopened.

•	 Severity: Refers to the impact of the defect on the system (e.g.,

critical, major, minor).

•	 Priority: Refers to the urgency of fixing the defect (e.g., high,

medium, low).

•	 Reporting defects involves logging them into a defect tracking

system with all relevant details (e.g., steps to reproduce, expected vs

actual results, severity, priority).

•	 Help in planning, executing, and managing the overall testing

process.

•	 Tools for reporting, tracking, and managing defects.

•	 Automation tools help reduce manual testing effort, especially for

regression tests.

Examples: JIRA, TestRail, HP ALM

Examples: Bugzilla, Mantis, JIRA

Examples: Selenium, QTP, JUnit

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

•	 Agile Testing Principles:

•	 Continuous Testing:

•	 Exploratory Testing:

10. Testing in Agile

11. Conclusion

•	 Testing is integrated into the development process and occurs

continuously.

•	 Collaboration between testers, developers, and business

stakeholders is key

•	 In Agile, testing is continuous and happens throughout the

development cycle.

•	 Automated testing tools are widely used to perform regression

and functional tests after each code change.

•	 Testers explore the system to identify defects that may not be

caught by formal test cases.

•	 It involves simultaneous learning, test design, and execution.

This ISTQB Manual Tester covers all fundamental topics essential
for manual testing according to the ISTQB syllabus. From
understanding the basics of testing and the software development
life cycle, to mastering test management, defect management, and
test design techniques. This guide serves as a quick reference for
key testing concepts, methodologies, and best practices that every
manual tester should know.

Click Here To Find Out More

https://elysiumacademy.org/
https://elysiumacademy.org/elysium_spark_notes/manual-tester-istqb-elysium-spark-note/

Copyrights by Elysium Academy Private Limited©

elysiumacademy.org

https://elysiumacademy.org/
https://elysiumacademy.org/

