
Copyrights by Elysium Academy Private Limited©

JAVA
PROGRAMMING

Elysium Academy Spark Notes

VERSION 2.4

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

01. Java Basics

Hello World Program

02. Data Types

• Class Declaration: Java programs are organized into classes,

 which contain the code. The keyword class defines a class.

• main() Method: The entry point of any Java application. It has

 the signature public static void main(String[] args).

• System.out.println(): A method to print output to the console.

• Key Points:

• Primitive Data Types

1. public class HelloWorld {
2. public static void main(String[] args) {
3. System.out.println(“Hello, World!”);
4. }
5. }

Java is a versatile and widely-used programming language that
supports Object-Oriented Programming (OOP) principles. It
is known for its portability across platforms (write once, run
anywhere), robustness, and security.

Java provides a wide range of data types, which are divided into
primitive and non-primitive data types.

Data
Type

Size
Default
Value

Example Usage

byte 1 byte 0 byte b = 100;

short 2 bytes 0 short s = 5000;

int 4 bytes 0 int num = 12345;

long 8 bytes 0L long l = 123456789L;

float 4 bytes 0.0f float f = 5.75f;

double 8 bytes 0.0d double d = 19.99;

char 2 bytes \u0000 char letter = ‘A’;

boolean 1 bit false boolean flag = true;

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

1. int age = 30; // Primitive data type
2. String name = “John”; // Non-primitive data type (String class)
3. final int DAYS_IN_WEEK = 7; // Constant variable

1. int age; // Declaration
2. age = 25; // Assignment
3. int height = 180; // Declaration + Assignment
4. final double PI = 3.14159; // Constant (unchangeable)

Variables are containers for storing data. Java is a statically-typed
language, meaning each variable must be declared with a data type.

• Non-Primitive Data Types

• Declaring Variables

• Variable Types:

Example :

String
 Sequence of characters
(class)

 String name = “Java”;

Array
 A fixed-size collection of
values

 int[] nums = {1, 2};

Class User-defined object Defined by developers

Type Description Example Usage

03. Variables

04. Operators

• Local Variables: Declared inside methods, constructors, or blocks

and used only within that scope.

• Instance Variables: Declared inside a class but outside methods,

representing the state of an object.

• Static/Class Variables: Declared with the static keyword; shared

among all objects of a class.

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

• Arithmetic Operators:

• Assignment Operators:

• Increment/Decrement Operators:

• Relational/Comparison Operators:

• Logical Operators:

Java has various operators to perform operations on variables and
values.

+ Addition a + b

- Subtraction a - b

* Multiplication a * b

/ Division a / b

%
Modulus (remain-
der)

a % b

Operator Description Example

Operator Description Example

== Equal to a == b

!= Not equal to a != b

> Greater than a > b

< Less than a < b

>=
Greater than or
equal

a >= b

<=
Less than or
equal

a <= b

Operator Description Example

&& Logical AND a && b

` `

! Logical NOT !a

Operator Description Example

= Assign value a = b;

+= Add and assign a += b;

-=
Subtract and as-
sign

a -= b;

*= Multiply and assign a *= b;

/= Divide and assign a /= b;

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

1. if (age > 18) {
2. System.out.println(“Adult”);
3. } else if (age == 18) {
4. System.out.println(“Just turned 18”);
5. } else {
6. System.out.println(“Minor”);
7. }

1. int day = 3;
2. switch (day) {
3. case 1: System.out.println(“Monday”); break;
4. case 2: System.out.println(“Tuesday”); break;
5. default: System.out.println(“Another day”);
6. }

1. for (int i = 0; i < 5; i++) {
2. System.out.println(i);
3. }

1. int i = 0;
2. while (i < 5) {
3. System.out.println(i);
4. i++;
5. }

Control flow statements determine the flow of execution in a
Java program. These include conditional statements, loops, and
branching statements.

• If-Else Statement:

• Switch Case:

• Loops

05. Control Flow Statements

Operator Description Example
++ Increment by 1 a++ or ++a

-- Decrement by 1 a-- or --a

• For Loop:

• While Loop:

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

• Array Declaration:

• Accessing Array Elements:

• Iterating through Arrays:

• Multidimensional Arrays:

• Branching Statements:

1. int i = 0;
2. do {
3. System.out.println(i);
4. i++;
5. } while (i < 5);

1. int[] numbers = {1, 2, 3, 4, 5}; // Array Initialization
2. int[] scores = new int[5]; // Declaring an empty array of size 5

1. int firstNumber = numbers[0]; // Access first element
2. numbers[2] = 10; // Modify third element

1. for (int num : numbers) {
2. System.out.println(num);
3. }

1. int[][] matrix = { {1, 2, 3}, {4, 5, 6} }; // 2D Array
2. int value = matrix[0][1]; // Access element at row 0, column 1

Control flow statements determine the flow of execution in a
Java program. These include conditional statements, loops, and
branching statements.

06. Arrays

• Do-While Loop:

break Exits a loop or switch statement break;

continue Skips the current iteration continue;

return
 Exits the current method and returns
a value

 return value;

Statement Description Example

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

1. public static int add(int a, int b) {
2. return a + b;
3. }

1. int sum = add(5, 3); // Method call
2. System.out.println(sum); // Output: 8

1. public int add(int a, int b) { return a + b; }
2. public double add(double a, double b) { return a + b; }

Methods allow reusability and modularity by grouping code into
reusable blocks. Java supports both predefined methods (e.g.,
System.out.println()) and user-defined methods.

Method overloading allows methods to have the same name but
different parameter lists (type, number, or order of parameters).

Java is an object-oriented programming language, which revolves
around the following key concepts:

A class is a blueprint for creating objects. An object is an instance
of a class.

• Defining Methods:

• Calling Methods:

• Method Overloading:

8.1. Classes and Objects

07. Methods (Functions)

08. Object-Oriented Programming (OOP)

• Class Definition:

1. class Dog {
2. String name;
3. int age;
4. void bark() {
5. System.out.println(“Woof!”);
6. }
7. }

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

8.2. Constructors

8.3. Encapsulation

8.4. Inheritance

1. Dog myDog = new Dog(); // Creating an object
2. myDog.name = “Buddy”; // Accessing fields
3. myDog.bark(); // Calling methods

1. Dog myDog = new Dog(“Buddy”, 3);

 1. class Dog {
 2. String name;
 3. int age;
 4.
 5. // Constructor
 6. Dog(String name, int age) {
 7. this.name = name;
 8. this.age = age;
 9. }
10. }

1. class Person {
2. private String name;
3. private int age;
4.
5. public String getName() { return name; }
6. public void setName(String newName) { this.name = newName; }
7. }

A constructor is a special method used to initialize objects. It has
the same name as the class and no return type.

Encapsulation is the concept of bundling data (fields) and methods
that operate on that data into a single unit (class). The fields are
made private, and access is provided through public getters and
setters.

Inheritance allows a new class to inherit properties and behaviors
(methods) from an existing class. The class being inherited from
is called the superclass (parent), and the class inheriting is the
subclass (child).

• Creating an Object:

• Creating an Object with Constructor:

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

 1. class Animal {
 2. void eat() {
 3. System.out.println(“This animal eats food.”);
 4. }
 5. }
 6.
 7. class Dog extends Animal {
 8. void bark() {
 9. System.out.println(“Woof!”);
10. }
11. }

1. Dog myDog = new Dog();
2. myDog.eat(); // Inherited from Animal class
3. myDog.bark(); // Defined in Dog class

Polymorphism allows objects of different classes to be treated
as objects of a common superclass. It can occur through method
overriding and method overloading.

Abstraction is the concept of hiding the internal details of an
implementation and only exposing the essential features. In Java,
abstraction is achieved using abstract classes or interfaces.

8.5. Polymorphism

8.6. Abstraction

• Using Inheritance:

• Method Overriding:

 1. class Animal {
 2. void sound() {
 3. System.out.println(“Animal makes a sound”);
 4. }
 5. }
 6. class Dog extends Animal {
 7. void sound() {
 8. System.out.println(“Woof!”);
 9. }
10. }
11. Animal myAnimal = new Dog();
12. myAnimal.sound(); // Outputs: Woof!

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

 1. abstract class Animal {
 2. abstract void sound();
 3. void eat() {
 4. System.out.println(“This animal eats food.”);
 5. }
 6. }
 7. class Dog extends Animal {
 8. void sound() {
 9. System.out.println(“Woof!”);
10. }
11. }

1. try {
2. int result = 10 / 0; // This will throw ArithmeticException
3. } catch (ArithmeticException e) {
4. System.out.println(“Cannot divide by zero!”);
5. } finally {
6. System.out.println(“This block always executes.”);
7. }

1. if (age < 18) {

2. throw new IllegalArgumentException(“Age must be 18 or older.”);

3. }

Java uses exceptions to handle runtime errors. Exceptions are
objects that represent an error. Java uses the try-catch-finally
mechanism for handling exceptions.

• Abstract Class:

• Checked Exceptions: Exceptions checked at compile-time (e.g.,

IOException, SQLException).

• Unchecked Exceptions: Exceptions not checked at compile-time

but at runtime (e.g., NullPointerException, ArrayIndexOutOfBounds-

Exception).

09. Exception Handling

• Try-Catch Block:

• Throwing Exceptions:

• Types of Exceptions:

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

 1. import java.io.File;
 2. import java.io.FileNotFoundException;
 3. import java.util.Scanner;
 4. File file = new File(“filename.txt”);
 5. Scanner reader = new Scanner(file);
 6. while (reader.hasNextLine()) {
 7. String data = reader.nextLine();
 8. System.out.println(data);
 9. }
10. reader.close();

1. import java.io.FileWriter;
2. import java.io.IOException;
3. FileWriter writer = new FileWriter(“filename.txt”);
4. writer.write(“Hello, File!”);
5. writer.close();

1. try {
2. FileWriter writer = new FileWriter(“filename.txt”);
3. writer.write(“Hello, File!”);
4. writer.close();
5. } catch (IOException e) {
6. System.out.println(“An error occurred.”);
7. e.printStackTrace();
8. }

File handling in Java is done using classes from the java.io package,
such as File, Scanner, FileWriter, BufferedReader, etc.

A package in Java is a namespace that organizes a set of related
classes and interfaces.

10. File Handling

11. Packages and Imports

• Reading from a File:

• Writing to a File:

• Handling IOException:

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

1. import java.util.Scanner;
2. Scanner input = new Scanner(System.in);
3. int age = input.nextInt();

1. package myPackage;
2. public class MyClass {
3. public void displayMessage() {
4. System.out.println(“Hello from MyClass”);
5. }

1. import myPackage.MyClass;
2. public class Main {
3. public static void main(String[] args) {
4. MyClass obj = new MyClass();
5. obj.displayMessage();
6. }
7. }

1. String str = “Hello, Java!”;
2. System.out.println(str.length()); // Output: 12
3. System.out.println(str.charAt(0)); // Output: H
4. System.out.println(str.substring(0, 5)); // Output: Hello
5. System.out.println(str.indexOf(‘J’)); // Output: 7

Java comes with a vast set of libraries, also called APIs (Application
Programming Interfaces), that provide a wide variety of functions.

• length(): Returns the length of the string.

• charAt(index): Returns the character at the specified index.

• substring(start, end): Returns the substring.

• indexOf(char): Returns the index of the first occurrence of the

character.

12. Useful Java Libraries

• Using Built-In Packages:

• Creating a Custom Package:

• Using the Custom Package:

12.1. String Manipulation:

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

1. import java.util.ArrayList;
2. import java.util.HashMap;
3. ArrayList<String> names = new ArrayList<>();
4. names.add(“Alice”);
5. names.add(“Bob”);
6. HashMap<String, Integer> ages = new HashMap<>();
7. ages.put(“Alice”, 30);
8. ages.put(“Bob”, 25);

1. import java.time.LocalDate;
2. import java.time.LocalTime;
3. LocalDate date = LocalDate.now();
4. LocalTime time = LocalTime.now();
5. System.out.println(“Current Date: “ + date);
6. System.out.println(“Current Time: “ + time);

Annotations provide metadata about the code and do not change
the program’s actual logic.

Java’s Collections Framework provides data structures like Lists,
Sets, Maps, etc.

Java 8 introduced the java.time package, which provides better
date and time manipulation capabilities.

• @Override: Indicates that a method is overriding a superclass

method.

• @Deprecated: Marks a method as deprecated (i.e., no longer rec-

ommended for use).

• @SuppressWarnings: Suppresses compiler warnings.

13. Java Annotations

14. Java Threads and Concurrency

• Common Annotations:

12.2. Collections Framework:

12.3. Date and Time API:

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

 1. import java.util.concurrent.ExecutorService;
 2. import java.util.concurrent.Executors;
 3. ExecutorService executor = Executors.newFixedThreadPool(2);
 4. executor.submit(() -> {
 5. System.out.println(“Task 1”);
 6. });
 7. executor.submit(() -> {
 8. System.out.println(“Task 2”);
 9. });
10. executor.shutdown();

Java provides built-in support for multithreading and concurrent
programming through the Thread class and the Runnable interface.

Java provides higher-level concurrency APIs like ExecutorService,
Callable, Future, etc., for handling multiple threads efficiently.

• By Extending the Thread Class:

• By Implementing Runnable Interface:

15. Java Memory Management

• Creating a Thread:

• Concurrency Utilities:

1. class MyThread extends Thread {
2. public void run() {
3. System.out.println(“Thread is running”);
4. }
5. }
6. MyThread thread = new MyThread();
7. thread.start();

1. class MyRunnable implements Runnable {
2. public void run() {
3. System.out.println(“Runnable is running”);
4. }
5. }
6.
7. Thread thread = new Thread(new MyRunnable());
8. thread.start();

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

Design patterns are reusable solutions to commonly occurring
problems in software design. Some popular patterns in Java
include:

Java provides automatic memory management with the help of
Garbage Collection. The garbage collector reclaims memory used
by objects that are no longer in use.

16. Java Design Patterns

• Creational Patterns:

• Memory Areas in Java:

• Heap: The runtime data area where objects are allocated.

• Stack: Stores method calls and local variables.

• Method Area: Contains class structure like metadata, methods,

constants, and static variables.

• PC Registers: Program counter register, storing addresses of cur-

rent instructions.

• Singleton Pattern: Ensures that a class has only one instance.

• Factory Pattern: Provides an interface for creating objects in a su-

perclass but allows subclasses to alter the type of objects that will be

created.

 1. public class Singleton {
 2. private static Singleton instance;
 3. private Singleton() { }
 4. public static Singleton getInstance() {
 5. if (instance == null) {
 6. instance = new Singleton();
 7. }
 8. return instance;
 9. }
10. }

 1. interface Shape {
 2. void draw();
 3. }
 4. class Circle implements Shape {
 5. public void draw() {

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

Streams are used to process collections of objects. They support
operations like filtering, mapping, and reducing in a declarative
way.

17. Java Advanced Topics

• Structural Patterns:

• Behavioral Patterns:

}
 8. }
 9. class Square implements Shape {
10. public void draw() {
11. System.out.println(“Drawing a Square”);
12. }
13. }
14. class ShapeFactory {
15. public Shape getShape(String shapeType) {
16. if (shapeType == null) return null;
17. if (shapeType.equalsIgnoreCase(“CIRCLE”)) return new Circle();
18. if (shapeType.equalsIgnoreCase(“SQUARE”)) return new Square();
19. return null;
20. }
21. }

• Adapter Pattern: Allows incompatible interfaces to work together.

• Decorator Pattern: Allows behavior to be added to an individual

object, dynamically.

• Observer Pattern: Defines a one-to-many dependency between

objects.

• Strategy Pattern: Allows algorithms to be selected at runtime.

1. import java.util.Arrays;
2. import java.util.List;
3. List<String> names = Arrays.asList(“Alice”, “Bob”, “Charlie”);
4. names.stream().filter(s -> s.startsWith(“A”)).forEach(System.out::print
ln); // Output: Alice

17.1. Java Streams (Java 8):

17.2. Lambda Expressions (Java 8):

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

Lambdas are anonymous functions that provide a concise way to
represent instances of functional interfaces.

A functional interface has only one abstract method but can have
multiple default or static methods. Some commonly used functional
interfaces are Runnable, Callable, Supplier, Consumer, etc.

18. Java Best Practices
• Follow Naming Conventions:

• DRY Principle (Don’t Repeat Yourself):

• Code Documentation:

• Error Handling:

• Immutable Classes:

• Use camelCase for variables and methods (e.g., myVariable).

• Use PascalCase for class names (e.g., MyClass).

• Use ALL_CAPS for constants (e.g., MAX_VALUE).

• Write reusable code by avoiding redundancy.

• Use comments and Javadoc for better readability and

maintainability.

• Make classes immutable to improve thread safety.

• Catch specific exceptions and avoid using broad exception classes

(e.g., avoid catch(Exception e) unless necessary).

1. interface MyFuncInterface {
2. void sayHello();
3. }
4. MyFuncInterface greet = () -> System.out.println(“Hello, World!”);
5. greet.sayHello(); // Output: Hello, World!

1. @FunctionalInterface
2. interface MyFuncInterface {
3. int add(int a, int b);
4. }
5. MyFuncInterface addition = (a, b) -> a + b;
6. System.out.println(addition.add(5, 3)); // Output: 8

17.3. Functional Interfaces (Java 8):

https://elysiumacademy.org/

Copyrights by Elysium Academy Private Limited©

Java is a powerful, high-level programming language that
has withstood the test of time due to its robustness, security,
portability, and performance. This comprehensive has covered the
fundamental and advanced aspects of Java, offering a valuable
reference to both beginners and seasoned developers alike. From
core language features like data types, operators, and control
flow statements, to advanced topics like OOP principles, file
handling, concurrency, and design patterns, Java continues to
evolve, supporting modern development paradigms like functional
programming and streams.

As you continue learning Java, explore the vast ecosystem of
libraries, frameworks, and tools that extend Java’s capabilities.
Whether you’re building enterprise-level applications, Android
apps, or working with big data technologies like Hadoop and Spark,
Java remains a top choice for developers worldwide. Happy coding!

18. Conclusion

• Avoid Memory Leaks:

• Be cautious about object references, particularly in long-lived

objects such as collections.

Click Here To Find Out More

https://elysiumacademy.org/
https://elysiumacademy.org/elysium_spark_notes/java-programming-elysium-spark-note/

Copyrights by Elysium Academy Private Limited©

elysiumacademy.org

https://elysiumacademy.org/
https://elysiumacademy.org/

